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How to Get the Most Accurate
Measurement-Based Estimates

Salvador Robles, Martine Ceberio, and Vladik Kreinovich

Abstract In many practical situations, we want to estimate a quantity 𝑦 that is
difficult – or even impossible – to measure directly. In such cases, often, there are
easier-to-measure quantities 𝑥1, . . . , 𝑥𝑛 that are related to 𝑦 by a known dependence
𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛). So, to estimate 𝑦, we can measure these quantities 𝑥𝑖 and use the
measurement results to estimate 𝑦. The two natural questions are: (1) within limited
resources, what is the best accuracy with which we can estimate 𝑦, and (2) to reach
a given accuracy, what amount of resources do we need? In this paper, we provide
answers to these two questions.

1 Introduction

Need for data processing and indirect measurements. One of the main objectives
of science is to describe the current state of the world. The state of the world –
and, in particular, the state of different objects and systems – is usually described
by specifying the values of the corresponding quantities. For example, from the
viewpoint of celestial mechanics, to describe the state of a planet, we need to know
its location and its velocity.
Some quantities we can measure directly. For example, we can directly measure

the size of an office or the weight of a person. Other quantities are difficult to measure
directly. For example, at present, there is no way to directly measure the size or the
weight of a planet. To estimate the value of each such quantity 𝑦, a natural idea is
to find some easier-to-measure quantities 𝑥1, . . . , 𝑥𝑛 that are related to 𝑦 by a known
dependence 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛). Then, to estimate 𝑦:

• we measure these auxiliary quantities 𝑥1, . . . , 𝑥𝑛, and then
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• we use the results 𝑥̃1, . . . , 𝑥̃𝑛 of measuring these quantities to produce the estimate
for 𝑦: 𝑦̃ = 𝑓 (𝑥̃1, . . . , 𝑥̃𝑛) .

Computing this estimate is an important case of data processing, and the whole
measurement-based procedure for estimating 𝑦 is known as indirect measurement
(in contrast to direct measurements, when we simply measure the value 𝑦); see,
e.g., [1].
Another objective of science is to predict the future state of the world – and this

future state is also characterized by the future values of the corresponding quantities.
For example, we may want to predict tomorrow’s weather, i.e., temperature, wind
speed, etc. To predict the future value 𝑦 of each of these quantities, we can use the
current values 𝑥1, . . . , 𝑥𝑛 of these quantities and of other related quantities, and we
need to know how the future value 𝑦 depends on these values 𝑥𝑖 , i.e., we need to
have an algorithm 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) describing this prediction. In this case too, to
estimate 𝑦:

• we measure the quantities 𝑥1, . . . , 𝑥𝑛, and then
• we use the results 𝑥̃1, . . . , 𝑥̃𝑛 of measuring these quantities to produce the estimate
for 𝑦: 𝑦̃ = 𝑓 (𝑥̃1, . . . , 𝑥̃𝑛) .

This is another example of data processing and indirect measurement.
One of the main objectives of engineering is to describe how to make the world

better. We may be looking for the best control strategy for a plant or for a car
that will make it the most efficient and/or the least polluting, we may be looking
for a gadget that leads to the best results. In all these cases, we need to find the
optimal values of the quantities that characterize this control or this gadget. To
find each some value 𝑦, we need to solve the corresponding optimization problem
and find an algorithm 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) that determines this value based on the
known values of the quantities 𝑥𝑖 that describe the corresponding environment. For
example, the best control strategy for a petrochemical plant may depend on the
amount of different chemical compounds in the incoming oil. In this case too, to find
the desired value 𝑦, we measure the values of these quantities, and we use the results
of these measurements to estimate 𝑦, i.e., we also apply data processing.

We want the most accurate data processing results, but our resources are lim-
ited. In all the above problems, we would like to get the estimate 𝑦̃ which is as
accurate as possible: we want the most accurate predictions of tomorrow’s weather,
we want to have the most accurate control of a petrochemical plant, etc. To get the
more accurate estimates of 𝑦, we need to measure the auxiliary quantities 𝑥1, . . . , 𝑥𝑛
more accurately. However, high-accuracy measurements are more costly, and our
resources are limited. So, we face the following problems:

• Within a limited budget, how accurately can we estimate the desired quantity 𝑦?
• When we want to estimate 𝑦 with a given accuracy, how much money do we
need?
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2 Let Us Formulate Both Problems in Precise Terms

What do we need to do to formulate the problems in precise terms. In both
problems, we want to find the relation between the cost of the corresponding mea-
surements and the accuracy with which these measurements enable us to estimate
𝑦. So, to describe these problems in precise terms, we need to be able to describe
accuracy of the measurements:

• we need to know how these accuracies affect the accuracy of estimating 𝑦, and
• we need to know how the cost of a measurement depends on its accuracy.

Let us analyze these questions one by one.

What we know about measurement accuracy. Measurements are never 100%
accurate, so the result 𝑥̃𝑖 of measuring the quantity 𝑥𝑖 is, in general, different from
the actual value 𝑥𝑖 . The difference Δ𝑥𝑖

def
= 𝑥̃𝑖 −𝑥𝑖 is known as themeasurement error.

In most cases, many different factors affect the measurement accuracy. As a result,
the measurement error is the joint effect of many different independent factors.
According to the Central Limit Theorem (see, e.g., [2]), when the number of these
factors is large, the probability distribution of these errors is close to Gaussian
(normal). In general, a normal distribution is uniquely determined by two parameters:
mean and standard deviation.
Measuring instruments are usually calibrated: before the instrument is released,

its readings are comparedwith somemore accurate (standard)measuring instrument.
The value 𝑥̃𝑖,𝑠𝑡 recorded by this more accurate measuring instrument is very close to
the actual value 𝑥𝑖: 𝑥̃𝑖,𝑠𝑡 ≈ 𝑥𝑖 . So, the difference 𝑥̃𝑖 − 𝑥̃𝑖,𝑠𝑡 between the measurement
errors is very close to the measurement error Δ𝑥𝑖 = 𝑥̃𝑖 − 𝑥𝑖:

𝑥̃𝑖 − 𝑥̃𝑖,𝑠𝑡 ≈ Δ𝑥𝑖 .

If the mean value of the measurement error is not 0, then, after a reasonable number
of comparisons, the average value of the differences 𝑥̃𝑖 − 𝑥̃𝑖,𝑠𝑡 will be close to this
mean. Once we realize that there is this mean difference, we can “recalibrate” the
measuring instrument – namely, we can subtract this mean value (known as bias)
from all the measurement results. For example, if a person knows that his/her watch
is 5 minutes behind, this person can simply add 5 minutes to all the watch’s reading
– or, better yet, re-set the watch so that the watch will show the correct time.
Because of this calibration process that eliminates possible biases, we can safely

assume that the mean value of the measurement error is 0. Thus, the only character-
istic that describe the measurement error is the standard deviation 𝜎𝑖 .
Usually, for different measurements, measurement errors are caused by different

factors. Thus, the random variables Δ𝑥𝑖 describing different measurement errors are
independent.

How measurement errors affect the accuracy with which we estimate 𝑦.Weknow
that the desired quantity 𝑦 is equal to 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛). So, if we knew the exact
values of the quantities 𝑥𝑖 , we would be able to apply the algorithm 𝑓 and get the
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exact value of 𝑦. As we have mentioned, in practice, we only know the measurement
results 𝑥̃𝑖 which are, in general, somewhat different from the actual values 𝑥𝑖 . Based
on the measurement results, we compute the estimate 𝑦̃ = 𝑓 (𝑥̃1, . . . , 𝑥̃𝑛) for 𝑦. We
want to find out how the estimation error Δ𝑦 def= 𝑦̃ − 𝑦 depends on the accuracies
with which we measure 𝑥𝑖 . Since we have argued that a reasonable description of
each measurement accuracy is provided by the standard deviation 𝜎𝑖 , the question
is: how the estimation accuracy depends on these standard deviations 𝜎𝑖 .
To answer this question, let us first describe the estimation error Δ𝑦 = 𝑦̃ − 𝑦 in

terms of the measurement errors Δ𝑥𝑖 . Substituting the expressions for 𝑦̃ and 𝑦 into
the formula that describes Δ𝑦, we conclude that

Δ𝑦 = 𝑓 (𝑥̃1, . . . , 𝑥̃𝑛) − 𝑓 (𝑥1, . . . , 𝑥𝑛) .

By definition of the measurement error Δ𝑥𝑖 = 𝑥̃𝑖 − 𝑥𝑖 , we have 𝑥𝑖 = 𝑥̃𝑖 − Δ𝑥𝑖 . Thus,
the above expression for Δ𝑦 takes the following form:

Δ𝑦 = 𝑓 (𝑥̃1, . . . , 𝑥̃𝑛) − 𝑓 (𝑥̃1 − Δ𝑥1, . . . , 𝑥̃𝑛 − Δ𝑥𝑛) .

Measurement errors Δ𝑥𝑖 are usually small, so that terms which are quadratic (or
of higher order) in terms of Δ𝑥𝑖 can be safely ignored. Thus, we can expand the
above expression in Taylor series in terms of Δ𝑥𝑖 and keep only linear terms in this
expansion. As a result, we get the following formula:

Δ𝑦 =

𝑛∑︁
𝑖=1

𝜕 𝑓

𝜕𝑥𝑖
(𝑥̃1, . . . 𝑥̃𝑛) Δ𝑥𝑖 ,

i.e.,

Δ𝑦 =

𝑛∑︁
𝑖=1

𝑐𝑖 · Δ𝑥𝑖 , (1)

where we denoted
𝑐𝑖
def
=

𝜕 𝑓

𝜕𝑥𝑖
(𝑥̃1, . . . 𝑥̃𝑛) .

According to the formula (1), the approximation error Δ𝑦 is a linear combination
of independent measurement errors Δ𝑥𝑖 . As we have mentioned, each measurement
error is normally distributed with mean 0 and standard deviation 𝜎𝑖 . It is known
that a linear combination of several independent random variables is also normally
distributed. Thus, we conclude that Δ𝑦 is also normally distributed. As we have men-
tioned, the normal distribution is uniquely determined by its mean and its standard
deviation 𝜎.
The mean of a linear combination of random variables is equal to the linear

combination of the means. Since the means of all the variables Δ𝑥𝑖 are 0s, this
implies that the mean of Δ𝑦 is also 0.
The quantity Δ𝑦 is the sum of 𝑛 independent random variables 𝑐𝑖 · Δ𝑥𝑖 . When

we multiply a random variable by a constant 𝑐, its variance is multiplied by 𝑐2. So,
for each term 𝑐𝑖 · Δ𝑥𝑖 , the variance is equal to 𝑐2𝑖 · 𝜎2𝑖 . It is known that the variance
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𝜎2 of the sum of several independent random variables is equal to the sum of their
variances. Thus, we conclude that

𝜎2 =

𝑛∑︁
𝑖=1

𝑐2𝑖 · 𝜎2𝑖 . (2)

How the cost of measuring 𝑥𝑖 depends on the measurement accuracy. A natural
way to increase the accuracy is to repeat the measurement sereval times and take the
average of the measurement results. How does this affect the accuracy?
Let us assume that we have a measuring instrument that measures the quantity

𝑥𝑖 with mean 0 and standard deviation 𝑚𝑖 . To increase the accuracy, we use this
instrument 𝑛𝑖 times, resulting in 𝑛𝑖 measurement results 𝑥̃𝑖,1, . . . , 𝑥̃𝑖,𝑛𝑖 , and then we
return the average as an estimate for the desired value 𝑥𝑖:

𝑥̃𝑖 =
𝑥̃𝑖,1 + . . . + 𝑥̃𝑖,𝑛𝑖

𝑛𝑖
.

What is the accuracy of this estimate?
Subtracting the actual value 𝑥𝑖 fromboth sides of this equality,we get the following

expression for the measurement error Δ𝑥𝑖 = 𝑥̃𝑖 − 𝑥𝑖:

Δ𝑥𝑖 =
𝑥̃𝑖,1 + . . . + 𝑥̃𝑖,𝑛𝑖

𝑛𝑖
− 𝑥𝑖 .

To simplify this expression, we can add the two terms in the right-hand side and then
re-order terms in the numerator:

Δ𝑥av𝑖 =
𝑥̃𝑖,1 + . . . + 𝑥̃𝑖,𝑛𝑖 − 𝑛𝑖 · 𝑥𝑖

𝑛𝑖
=

(
𝑥̃𝑖,1 − 𝑥𝑖

)
+ . . . +

(
𝑥̃𝑖,𝑛𝑖 − 𝑥𝑖

)
𝑛𝑖

=

Δ𝑥𝑖,1 + . . . + Δ𝑥𝑖,𝑛𝑖

𝑛𝑖
, (3)

where Δ𝑥𝑖, 𝑗
def
= 𝑥̃𝑖, 𝑗 − 𝑥𝑖 is the measurement error of the 𝑗-th measurement.

The numerator of the formula (3) is the sumof 𝑛𝑖 independent randomvariables, so
its variance is equal to the sum of their variances. The variance of each measurement
error Δ𝑥𝑖, 𝑗 is 𝑚2𝑖 , so the variance of the numerator is equal to 𝑛𝑖 · 𝑚2𝑖 . When we
multiply a random variable by a constant 𝑐, its variance is multiplied by 𝑐2. In our
case,

𝑐 =
1
𝑛𝑖
,

thus, the variance 𝜎2
𝑖
of the measurement error Δ𝑥𝑖 is equal to

𝜎2𝑖 =

(
1
𝑛𝑖

)2
· 𝑛𝑖 · 𝑚2𝑖 =

𝑚2
𝑖

𝑛𝑖
. (4)
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What about the cost? Let 𝑑𝑖 be the cost of each individual measurement. When
we repeat the measurement 𝑛𝑖 times, the overall cost of measuring the 𝑖-th quantity
𝑥𝑖 is 𝑛𝑖 times larger, i.e.,

𝐷𝑖 = 𝑛𝑖 · 𝑑𝑖 (5)

Let us analyze how the cost depends on accuracy. Once we are given the desired
accuracy 𝜎𝑖 , we can find, from the formula (4), the value 𝑛𝑖 corresponding to this
accuracy:

𝑛𝑖 =
𝑚2

𝑖

𝜎2
𝑖

.

Substituting this value 𝑛𝑖 into the formula (5), we get

𝐷𝑖 =
𝑚2

𝑖

𝜎2
𝑖

· 𝑑𝑖 ,

i.e.,
𝐷𝑖 =

𝐶𝑖

𝜎2
𝑖

, (6)

where we denoted
𝐶𝑖
def
= 𝑚2𝑖 · 𝑑𝑖 . (7)

Comment. In some cases, to get a more accurate measurement, we explicitly repeat
a measurement several times. An example is the way some devices for measuring
blood pressure work: they measure blood pressure three times and take an average.
Some measuring devices do it implicitly: e.g., super-precise clocks usually consist
of several independent clocks, and the result is obtained by processing the reading
of all these clocks.
In general, it is reasonable to assume that the dependence of measurement cost

on measurement accuracy has the form (6)–(7). This allows us to answer a similar
question about estimating 𝑦.
How the cost of estimating 𝑦 depends on the estimation accuracy. If we measure
each quantity 𝑥𝑖 with accuracy𝜎𝑖 , then the accuracy𝜎2 of the resulting estimate for 𝑦
is determined by the formula (2), and the overall measurement cost𝐷 = 𝐷1+ . . .+𝐷𝑛

can be obtained by adding up the costs of all 𝑛 measurements:

𝐷 =

𝑛∑︁
𝑖=1

𝐶𝑖

𝜎2
𝑖

. (8)

So, we arrive at the following precise formulation of the above two problems.
What we want. In both problems, we want to find out the accuracies 𝜎𝑖 with which
we need to measure the 𝑖-th quantity.
Formulating the first problem in precise terms. A limited budget means that our
expenses 𝐷 are bounded by some given value 𝐷0. This means that we want to find
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the values 𝜎𝑖 for which the estimation error (2) is the smallest possible under the
constraint 𝐷 ≤ 𝐷0, i.e.,

𝑛∑︁
𝑖=1

𝐶𝑖

𝜎2
𝑖

≤ 𝐷0. (9)

Formulating the second problem in precise terms. In the second problem, we are
given the accuracy 𝜎2 with which we want to estimate 𝑦. So, we want to find the
values 𝜎𝑖 for which the cost (8) is the smallest possible under the constraint (2).

3 Within Limited Resources, What Is the Best Accuracy With
Which We Can Estimate 𝒚?

Analysis of the problem. In this problem, to find the desired values 𝜎𝑖 , we minimize
the expression (2) under the non-strict inequality constraint (9). The minimum of a
function under non-strict inequality constraint is attained:

• either when the inequality is strict – in this case it is a local minimum of the
objective function (2),

• or when the inequality becomes equality.

Let us show that the first case is not possible. Indeed, in the local minimum, all
derivatives of the objective function (2) should be equal to 0. If we differentiate the
expression (2) with respect to each unknown 𝜎𝑖 and equate the derivative to 0, we
get 𝜎𝑖 = 0. In this case, the left-hand side of the inequality (9) is infinite, so this
inequality is not satisfied.
Thus, the desired minimum occurs when the inequality (9) becomes an equality,

i.e., when we have
𝑛∑︁
𝑖=1

𝐶𝑖

𝜎2
𝑖

= 𝐷0. (10)

To minimize the objective function (2) under the equality constraint (10), we can
use the Lagrange multiplier method, according to which this constraint optimization
problem can be reduced, for an appropriate value𝜆, to the unconstrained optimization
problem of minimizing the expression

𝑛∑︁
𝑖=1

𝑐2𝑖 · 𝜎2𝑖 + 𝜆 ·
(

𝑛∑︁
𝑖=1

𝐶𝑖

𝜎2
𝑖

− 𝐷0

)
, (11)

where the value 𝜆 can be determined by the condition that the minimizing values 𝜎𝑖

satisfy the equality (10).
Differentiating the expression (11) with respect to 𝜎𝑖 and equating the derivative

to 0, we conclude that
2𝑐2𝑖 · 𝜎𝑖 − 2𝜆 · 𝐶𝑖

𝜎3
𝑖

= 0,
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i.e., equivalently,

2𝑐2𝑖 · 𝜎𝑖 = 2𝜆 · 𝐶𝑖

𝜎3
𝑖

.

To find an explicit expression for 𝜎𝑖 , we multiply both sides by 𝜎3𝑖 and divide both
sides by 2𝑐2

𝑖
. As a result, we get

𝜎4𝑖 = 𝜆 · 𝐶𝑖

𝑐2
𝑖

,

thus

𝜎2𝑖 =
√
𝜆 ·

√
𝐶𝑖

|𝑐𝑖 |
. (12)

To find 𝜆, we substitute this expression into the equality (10) and get

𝐷0 =

𝑛∑︁
𝑗=1

𝐶 𝑗 · |𝑐 𝑗 |√
𝜆 ·

√︁
𝐶 𝑗

=
1
√
𝜆
·

𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
.

Thus,
√
𝜆 =

1
𝐷0

·
𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
.

Substituting this expression for
√
𝜆 into the formula (12), we get the following answer.

Optimal selection of measuring instruments.Toget the best accuracy under limited
resources, we need to select measuring instruments for which

𝜎2𝑖 =
1
𝐷0

·
𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
·
√
𝐶𝑖

|𝑐𝑖 |
. (13)

Substituting these expressions into the formula (2), we get the best accuracy 𝜎2 that
we can achieve under this resource limitation:

𝜎2 =
1
𝐷0

·
𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
·

𝑛∑︁
𝑖=1

(√︁
𝐶𝑖 · |𝑐𝑖 |

)
,

i.e.,

𝜎2 =
1
𝐷0

·
(

𝑛∑︁
𝑖=1

(√︁
𝐶𝑖 · |𝑐𝑖 |

))2
. (14)
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4 To Reach a Given Accuracy, What Amount of Resources Do
We Need?

Analysis of the problem. In this problem, to find the desired values 𝜎𝑖 , we minimize
the expression (8) under the constraint (2). To minimize the objective function
(8) under the equality constraint (2), we can use the Lagrange multiplier method,
according to which this constraint optimization problem can be reduced, for an
appropriate value 𝜆, to the unconstrained optimization problem of minimizing the
expression

𝑛∑︁
𝑖=1

𝐶𝑖

𝜎2
𝑖

+ 𝜆 ·
(

𝑛∑︁
𝑖=1

𝑐2𝑖 · 𝜎2𝑖 − 𝜎2

)
, (15)

where the value 𝜆 can be determined by the condition that the minimizing values 𝜎𝑖

satisfy the equality (2).
Differentiating the expression (15) with respect to 𝜎𝑖 and equating the derivative

to 0, we conclude that
−2𝐶𝑖

𝜎3
𝑖

+ 2𝜆 · 𝑐2𝑖 · 𝜎𝑖 = 0,

i.e., equivalently,

2
𝐶𝑖

𝜎3
𝑖

= 2𝜆 · 𝑐2𝑖 · 𝜎𝑖 .

To find an explicit expression for 𝜎𝑖 , we multiply both sides by 𝜎3𝑖 and divide both
sides by 2𝑐2

𝑖
. As a result, we get

𝜎4𝑖 =
1
𝜆
· 𝐶𝑖

𝑐2
𝑖

,

thus

𝜎2𝑖 =
1
√
𝜆
·
√
𝐶𝑖

|𝑐𝑖 |
. (16)

To find 𝜆, we substitute this expression into the equality (2) and get

𝜎2 =

𝑛∑︁
𝑗=1

𝑐2𝑗 ·
1
√
𝜆
·
√︁
𝐶 𝑗

|𝑐 𝑗 |
=
1
√
𝜆
·

𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
.

Thus,
1
√
𝜆
=

𝜎2

𝑛∑
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

) . (17)

Substituting this expression into the formula (16), we get the following answer.

Optimal selection of measuring instruments. To get the smallest cost guaranteeing
the given accuracy 𝜎, we need to select measuring instruments for which
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𝜎2𝑖 =
𝜎2

𝑛∑
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

) ·
√
𝐶𝑖

|𝑐𝑖 |
. (18)

Substituting these expressions into the formula (8), we get the smallest cost that we
can achieve to provide the desired accuracy:

𝐷 =

𝑛∑︁
𝑖=1

𝐶𝑖 · |𝑐𝑖 |
𝜎2 ·

√
𝐶𝑖

·
𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
=
1
𝜎2

·
𝑛∑︁
𝑖=1

(√︁
𝐶𝑖 · |𝑐𝑖 |

)
·

𝑛∑︁
𝑗=1

(√︁
𝐶 𝑗 · |𝑐 𝑗 |

)
,

i.e.,

𝐷 =
1
𝜎2

·
(

𝑛∑︁
𝑖=1

(√︁
𝐶𝑖 · |𝑐𝑖 |

))2
. (19)
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